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ÖSSZEFOGLALÁS 

A kutatás folyamán egy másodrendű forgó 
elektromechanikus rendszer hiszterézissel terhelt 
csúszómód szabályozás alapú megoldásait vizsgáljuk. 
Az elektromechanikus rendszer meghajtója egy IPMSM 
gép. A kutatás során az adaptív csúszófelület és adaptív 
elérési törvény metódusok kerültek kivizsgálásra, illetve 
kiértékelésre beállási idő, túllövés és beállási pontosság 
alapján.  

ABSTRACT 

In this paper sliding mode control methods of a second 
order electromechanical system was investigated. The 
driveline was loaded with a hysteresis profile and the 
drive of the system is an IPMSM. In this brief the 
adaptive sliding surface and adaptive reaching law 
methods were compared. The comparison is based on the 
respective settling time, settling precision and overshoot 
of the control strategy. 

INTRODUCTION 

The global trends in the electrification of drivelines show 
an upwards trend. More and more Internal Permanent 
Magnet Synchronous Machines (IPMSM) are used in 
electric or mild-hybrid vehicles. This is due to a number 
of positive attributes of IPMSMs, such as high efficiency, 
high power density and a wide-speed range operation. In 
many cases these systems have a number of uncertainties 
[1]. The uncertainties can vary from environmental 
hazards to driveline losses or changing parameters 
depending on the working point of the given driveline. 
To handle these uncertainties, many variable structure 
control (VSC) systems have been researched and many 
surveys and state-of-the-art papers were written in this 
field [2], [3]. Among the various VSC method Sliding 
Mode Control (SMC) is one of the most applied due to 
its favorable characteristics such as robustness, 
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simplicity and possibility to reduce control system 
complexity by using hyperplanes. 

The hyperplanes of the SMC controller are commonly 
sliding surfaces in the scientific literature. These sliding 
surfaces are defined in the systems m-dimensional phase 
plane which can be derived from the mathematical model 
given for the system. The sliding surfaces are reached 
according to a set of reaching laws, then the system is 
controlled to the desired state of the system via a control 
input. These phases of the control are called, reaching 
and sliding phase. Moreover, in modern 
electromechanical drivelines the control of the system is 
carried out with the help of digital electric circuit units 
(ECU) and microcontrollers. Therefore, discrete-time 
SMC (DSMC) controllers are more and more prevelant 
today [4]. In modern DSMC structures to enhance 
dynamic performance we may either introduce nonlinear 
sliding surfaces to achieve pre-defined finite settling 
time, resulting in terminal-DSMC [5]. Another way, is to 
attenuate the chattering by using high-order DSMC [6] or 
by using different switching based functions for the 
control law [7]. Nonetheless, further work is still needed 
regarding high dynamical electromechanical systems, 
where we account for hysteresis, input delay and input 
constraints. Therefore, in this paper we investigate the 
settling precision of a DSMC structure, where we 
account for control input constraints and hysteresis. The 
rest of the paper is organized as follows. In Sec.2 the 
theoretical background of the paper is established. In 
Sec.3 the designed discrete-time sliding mode controller 
is detailed with the selected reaching and sliding phase 
control laws. In Sec.0 the simulation results are 
presented. The simulations are carried out in 
Matlab/Simulink using discrete-time software (SW) 
modelling and continuous-time hardware modelling 
(HW). Finally, in section Sec.0 we conclude the paper, 
summarize the results and investigate future 
improvement possibilities. 
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1. THEORETICAL BACKGROUND 
 

In this section the theoretical background of the paper is 
provided, meaning the equations describing the system 
and the structure of the control loop. 
 
1.1 Motion and machine equations of a second order 

electromechanical driveline. 
 
In this paper the mechanical components of the 
electromechanical driveline are assumed to be modelled 
as a second order system, where reduced stiffness s and 
damping coefficient k are acting against the rotation of 
an axle’s inertia Θ𝑚𝑚 where the driving torque is hampered 
by a hysteresis characteristic 𝑀𝑀η(𝐱𝐱). 

Then, the motion equations of the electromechanical 
driveline can be written in a state space model as: 
 

[𝜑𝜑mΩm]
̇ = [

0 1
−𝑠𝑠
Θm

−𝑘𝑘
Θm
]

⏟      
𝐀𝐀

[𝜑𝜑mΩm] + [
0
1
Θm
]

⏟  
𝐛𝐛

𝑀𝑀e⏟
u
+ [

0
−
𝑀𝑀𝜂𝜂
Θm
]

⏟    
𝐝𝐝

(1) 

  
where, 𝐀𝐀 is the state matrix, 𝐛𝐛 is the input matrix, d is the 
uncertainty vector, φm is the motor position, Ωm is the 
motor speed, Θm is the electric drivelines reduced inertia,  
𝑀𝑀𝜂𝜂(𝜑𝜑m) is a general state dependent hysteresis profile of 
the mechanical driveline, in this case linearly dependent 
on the motor position. Finally, 𝑀𝑀e is the electric torque of 
the motor. In modern SMC control structures, the 
controlled state variables are to follow some reference 
trajectory. This is most done by introducing error 
functions given in equation (2)  
 

𝜑𝜑~m = 𝜑𝜑m − 𝜑𝜑m𝑟𝑟

Ω
~
m = Ωm − Ωm𝑟𝑟

(2) 

 
where, 𝜑𝜑m𝑟𝑟  and Ωm𝑟𝑟  are reference motor position and 
speed. 

To continue to adhere to the papers given in the 
following section, these error functions are used as the 
states of the state-space, this entwines the resultant state-
space equations given in equation (3). 
 

𝐱̇𝐱 = 𝐀𝐀(𝐱𝐱 − 𝐱𝐱𝑟𝑟) + 𝐛𝐛𝑢𝑢 + 𝐝𝐝 (3) 
 

Where, 𝐱𝐱 = [𝜑𝜑
~
m

Ω
~
m
] and 𝐱𝐱𝑟𝑟 = [𝜑𝜑m

𝑟𝑟

Ωm𝑟𝑟
] . 

 
It is to be noted that, the difference based state space was 
made by subtracting the reference values and cannot be 
handled as initial condition of the state space equations, 
therefore, they are added to the state space model. The 
derived equivalent control law will be discussed in Sec.0. 
The control signal of the mechanical portion 𝑀𝑀e of the 
electromechanical system is the electric torque of the 

IPMSM within the system. The torque of an IPMSM can 
be calculated via motor parameters and the help of 𝑖𝑖𝑑𝑑 and 
𝑖𝑖𝑞𝑞   current components as 
 

𝑀𝑀e =
3
2𝑛𝑛P𝑖𝑖q(ΨPM + Δ𝐿𝐿𝑖𝑖d),

(4) 
 
where 𝑛𝑛P is the number of pole pairs in the IPMSM, ΨPM 
is the flux of the permanent magnet, Δ𝐿𝐿 = 𝐿𝐿d − 𝐿𝐿q, 
where 𝐿𝐿d and 𝐿𝐿q  are the d and q axis inductance of the 
machine. The voltage equation of an IPMSM where the 
iron losses are also considered can be written in dq-axis 
as [8]  
 

𝑣𝑣𝑑𝑑 = 𝑅𝑅𝑠𝑠𝑖𝑖𝑑𝑑1 + 𝐿𝐿𝑑𝑑
𝑑𝑑𝑖𝑖𝑑𝑑
𝑑𝑑𝑑𝑑 − 𝜔𝜔1𝐿𝐿𝑞𝑞𝑖𝑖𝑞𝑞

𝑣𝑣𝑞𝑞 = 𝑅𝑅𝑠𝑠𝑖𝑖𝑞𝑞1 + 𝐿𝐿𝑞𝑞
𝑑𝑑𝑖𝑖𝑞𝑞
𝑑𝑑𝑑𝑑 + 𝜔𝜔1𝐿𝐿𝑑𝑑𝑖𝑖𝑑𝑑 + 𝜔𝜔1𝛹𝛹𝑃𝑃𝑃𝑃

(5) 

 
where, ω1 = 𝑛𝑛PΩm is the electric speed of the machine, 
𝑅𝑅s is the stator resistance, 𝑣𝑣d and 𝑣𝑣q are the direct and 
quadrature voltages. Furthermore, 𝑖𝑖d1 = 𝑖𝑖𝑑𝑑 + 𝑖𝑖𝑑𝑑𝑑𝑑  and 
𝑖𝑖q1 = 𝑖𝑖𝑞𝑞 + 𝑖𝑖𝑞𝑞𝑞𝑞  where 𝑖𝑖di and 𝑖𝑖𝑞𝑞𝑞𝑞 are the d and q axis 
current through resistance 𝑅𝑅𝑖𝑖, expressing the iron loss of 
the machine [8]. Two constraint equations are given for 
the IPMSM. The voltage constraint given in the 
following equation (6).  
 

√𝑣𝑣d2 + 𝑣𝑣q2 = 𝑉𝑉1 ≤ 𝑉𝑉1,max =
𝑉𝑉DC
√3
  (6) 

 
Where 𝑉𝑉1 denotes the momentary amplitude of the stator 
voltage and 𝑉𝑉DC is the DC bus voltage of the VSI. 
The current constraint equation given in the following 
equation (7).  
 

√𝑖𝑖d12 + 𝑖𝑖q12 = 𝐼𝐼1 ≤ 𝐼𝐼max, (7) 
 
where 𝐼𝐼1 denotes the momentary amplitude of the stator 
current and 𝐼𝐼max is the maximum allowable current of the 
drive system. 
 

 1.2 Control Structure of the Driveline 
 
On Fig.1 the control structure of the electric driveline can 
be seen. First, the reference position 𝜑𝜑m𝑟𝑟   is passed to the 
sliding mode controller, which outputs the control input 
of the mechanical driveline, which is the reference 
torque. The reference torque of the IPMSM machine is 
calculated according to the machine equations given in 
equation (5) and based on the optimal searching-based 
reference current generation algorithm presented in the 
paper [8]. 
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depending on the working point of the given driveline. 
To handle these uncertainties, many variable structure 
control (VSC) systems have been researched and many 
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simplicity and possibility to reduce control system 
complexity by using hyperplanes. 

The hyperplanes of the SMC controller are commonly 
sliding surfaces in the scientific literature. These sliding 
surfaces are defined in the systems m-dimensional phase 
plane which can be derived from the mathematical model 
given for the system. The sliding surfaces are reached 
according to a set of reaching laws, then the system is 
controlled to the desired state of the system via a control 
input. These phases of the control are called, reaching 
and sliding phase. Moreover, in modern 
electromechanical drivelines the control of the system is 
carried out with the help of digital electric circuit units 
(ECU) and microcontrollers. Therefore, discrete-time 
SMC (DSMC) controllers are more and more prevelant 
today [4]. In modern DSMC structures to enhance 
dynamic performance we may either introduce nonlinear 
sliding surfaces to achieve pre-defined finite settling 
time, resulting in terminal-DSMC [5]. Another way, is to 
attenuate the chattering by using high-order DSMC [6] or 
by using different switching based functions for the 
control law [7]. Nonetheless, further work is still needed 
regarding high dynamical electromechanical systems, 
where we account for hysteresis, input delay and input 
constraints. Therefore, in this paper we investigate the 
settling precision of a DSMC structure, where we 
account for control input constraints and hysteresis. The 
rest of the paper is organized as follows. In Sec.2 the 
theoretical background of the paper is established. In 
Sec.3 the designed discrete-time sliding mode controller 
is detailed with the selected reaching and sliding phase 
control laws. In Sec.0 the simulation results are 
presented. The simulations are carried out in 
Matlab/Simulink using discrete-time software (SW) 
modelling and continuous-time hardware modelling 
(HW). Finally, in section Sec.0 we conclude the paper, 
summarize the results and investigate future 
improvement possibilities. 
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on the motor position. Finally, 𝑀𝑀e is the electric torque of 
the motor. In modern SMC control structures, the 
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To continue to adhere to the papers given in the 
following section, these error functions are used as the 
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It is to be noted that, the difference based state space was 
made by subtracting the reference values and cannot be 
handled as initial condition of the state space equations, 
therefore, they are added to the state space model. The 
derived equivalent control law will be discussed in Sec.0. 
The control signal of the mechanical portion 𝑀𝑀e of the 
electromechanical system is the electric torque of the 

IPMSM within the system. The torque of an IPMSM can 
be calculated via motor parameters and the help of 𝑖𝑖𝑑𝑑 and 
𝑖𝑖𝑞𝑞   current components as 
 

𝑀𝑀e =
3
2𝑛𝑛P𝑖𝑖q(ΨPM + Δ𝐿𝐿𝑖𝑖d),

(4) 
 
where 𝑛𝑛P is the number of pole pairs in the IPMSM, ΨPM 
is the flux of the permanent magnet, Δ𝐿𝐿 = 𝐿𝐿d − 𝐿𝐿q, 
where 𝐿𝐿d and 𝐿𝐿q  are the d and q axis inductance of the 
machine. The voltage equation of an IPMSM where the 
iron losses are also considered can be written in dq-axis 
as [8]  
 

𝑣𝑣𝑑𝑑 = 𝑅𝑅𝑠𝑠𝑖𝑖𝑑𝑑1 + 𝐿𝐿𝑑𝑑
𝑑𝑑𝑖𝑖𝑑𝑑
𝑑𝑑𝑑𝑑 − 𝜔𝜔1𝐿𝐿𝑞𝑞𝑖𝑖𝑞𝑞

𝑣𝑣𝑞𝑞 = 𝑅𝑅𝑠𝑠𝑖𝑖𝑞𝑞1 + 𝐿𝐿𝑞𝑞
𝑑𝑑𝑖𝑖𝑞𝑞
𝑑𝑑𝑑𝑑 + 𝜔𝜔1𝐿𝐿𝑑𝑑𝑖𝑖𝑑𝑑 + 𝜔𝜔1𝛹𝛹𝑃𝑃𝑃𝑃

(5) 

 
where, ω1 = 𝑛𝑛PΩm is the electric speed of the machine, 
𝑅𝑅s is the stator resistance, 𝑣𝑣d and 𝑣𝑣q are the direct and 
quadrature voltages. Furthermore, 𝑖𝑖d1 = 𝑖𝑖𝑑𝑑 + 𝑖𝑖𝑑𝑑𝑑𝑑  and 
𝑖𝑖q1 = 𝑖𝑖𝑞𝑞 + 𝑖𝑖𝑞𝑞𝑞𝑞  where 𝑖𝑖di and 𝑖𝑖𝑞𝑞𝑞𝑞 are the d and q axis 
current through resistance 𝑅𝑅𝑖𝑖, expressing the iron loss of 
the machine [8]. Two constraint equations are given for 
the IPMSM. The voltage constraint given in the 
following equation (6).  
 

√𝑣𝑣d2 + 𝑣𝑣q2 = 𝑉𝑉1 ≤ 𝑉𝑉1,max =
𝑉𝑉DC
√3
  (6) 

 
Where 𝑉𝑉1 denotes the momentary amplitude of the stator 
voltage and 𝑉𝑉DC is the DC bus voltage of the VSI. 
The current constraint equation given in the following 
equation (7).  
 

√𝑖𝑖d12 + 𝑖𝑖q12 = 𝐼𝐼1 ≤ 𝐼𝐼max, (7) 
 
where 𝐼𝐼1 denotes the momentary amplitude of the stator 
current and 𝐼𝐼max is the maximum allowable current of the 
drive system. 
 

 1.2 Control Structure of the Driveline 
 
On Fig.1 the control structure of the electric driveline can 
be seen. First, the reference position 𝜑𝜑m𝑟𝑟   is passed to the 
sliding mode controller, which outputs the control input 
of the mechanical driveline, which is the reference 
torque. The reference torque of the IPMSM machine is 
calculated according to the machine equations given in 
equation (5) and based on the optimal searching-based 
reference current generation algorithm presented in the 
paper [8]. 
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Fig.1. Control structure of the electromechanical drive system. 

 
 
The reference generating algorithm outputs the reference 
currents and passes them to the " Current Controller" 
block. The current controller was designed according to 
paper [9]. In the paper the closed loop current controller 
was designed using discrete time block-pole placement 
to define its dynamics. In case of a wide range of working 
points the motor parameters could vary, this can be 
handled with LUTs or parameter identification methods. 
The Space Vector Modulation (SVM) block implements 
the most commonly used so-called Min-Max modulation 
method and outputs the phase duties to the legs of the 
Voltage Source Inverter (VSI). The IPMSM model 
accounts for iron losses and copper losses. Finally, the 
SMC control of the electromechanical driveline is 
detailed. However as this is the main component of this 
article it is discussed separately in the following section. 
 

2. SLIDING MODE CONTROLLER DESIGNS 
 
In this section the designed sliding mode controller is 
described. Paper [10] proposed a sliding mode control 
where the sliding surface adapts according to the system 
state. It is suggested in that paper that all sliding surfaces 
should be stable and attracting the system states to the 
origin of the phase plane. Furthermore, a fuzzy logic and 
iterative cost function minimalization algorithm was 
included in that paper. Here, different to the findings of 
that study, a simpler approach is chosen, simply using a 
state dependant line segment of an initial and a target 
sliding manifold, then calculating the control signal 
based on the equivalent control law and saturation 
function defined. First let us derive the equivalent control 
in case of a constant sliding surface to illustrate the 
drawbacks of a constant sliding manifold. 
 

2.1 Derivation of Control Law 
 
Most commonly the sliding manifold is defined as  
 

𝜎𝜎(x) = 𝒄𝒄𝑻𝑻x = 𝜆𝜆1𝜑𝜑~m + Ω
~

m (8) 
 
where, 𝒄𝒄𝑻𝑻 = [𝜆𝜆11]  is the vector defining the sliding 
manifold. Along the sliding manifold the error signal is 
null, and in case of continuous control the differential is 
also zero, 
 

𝒄𝒄𝑻𝑻𝐱̇𝐱 = 0 (9) 
 
Therefore, by multiplying both sides of equation (3) by 
the sliding surface vector and solving for the control 
input, we can find the equivalent control law along the 
sliding surface in discrete time, derived in equation (10) 
we have: 
 

u𝑒𝑒𝑒𝑒(n) = −(𝐜𝐜𝑇𝑇b)−1𝐜𝐜𝑇𝑇A(x − xr)
= 𝑠𝑠 ⋅ 𝜑𝜑m + (𝑘𝑘 − Θm𝜆𝜆1)Ωm

(10) 

 
where n represents the 𝑛𝑛-th sampling time of the system, 
however for sake of brevity this will be neglected in the 
notation later on.  
To handle the unknown nonlinear disturbance most 
commonly a switching-type control law is added to the 
equivalent control. In our case is a  a saturation based 
control law: 
 

𝑢𝑢𝑠𝑠𝑠𝑠 = −𝑀𝑀e
max ⋅ sat(𝜎𝜎(𝐱𝐱)) (11) 

 
where, the sat(𝜎𝜎(𝐱𝐱)) function is defined as according to 
equation (12). 
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sat(𝜎𝜎(𝐱𝐱)) = {
−1 if 𝜎𝜎(𝐱𝐱) < −Δ

𝜎𝜎(𝐱𝐱)
Δ if |𝜎𝜎(𝐱𝐱)| < Δ
1 if 𝜎𝜎(𝐱𝐱) > Δ

(12) 

 
Where, Δ is a design parameter. Thus the sliding phase 
control input can be written as: 
 

u = 𝑢𝑢eq + 𝑢𝑢sw (13) 

It can be noticed, when all is written, that in this case the 
−Θm𝜆𝜆1Ωm component of the equivalent control law 
impedes the maximum available torque output, 
especially in deep field weakening during reaching 
phase, thus restraining the control structure to output the 
maximal control signal. To minimize this problem one 
could say that tuning 𝜆𝜆1 sufficiently should be enough. 
However, this will be constly in dynamics near the 
equilibrium, or in an edge case, if 𝜆𝜆1 = 0, then the error 
signal 𝜎𝜎(𝐱𝐱) = 0 will also hold, thus the control will not 
produce any torque reference. To attenuate this problem 
an adaptive sliding manifold is proposed. 
 

2.2 Adaptive Sliding Manifold 
 
The idea is to minimize the effect of this component of 
the control law while the motor is speeding up, and near 
the equilibrium we allow the full effect. Meaning, we 
wish the following characteristic for the parameter 𝐜𝐜𝑇𝑇  
defined in equation (14). 
 

𝑙𝑙𝑙𝑙𝑙𝑙 
𝜑𝜑~→0

𝐜𝐜𝑻𝑻(𝜑𝜑~) = 𝐜𝐜𝑡𝑡
𝑇𝑇

𝑙𝑙𝑙𝑙𝑙𝑙
𝜑𝜑~→inf

𝐜𝐜𝑻𝑻(𝜑𝜑~) = 𝐜𝐜𝒊𝒊𝒊𝒊𝒊𝒊
𝑻𝑻 (14) 

 
In equation (14), the slope of the linear manifold has been 
made a function of the position error 𝐜𝐜𝑻𝑻(𝜑𝜑~), 𝐜𝐜𝒊𝒊𝒊𝒊𝒊𝒊

𝑻𝑻  is the 
initial slope and 𝐜𝐜𝑡𝑡

𝑇𝑇  is the target slope.  
However, if let us assume that the initial slope would be 
null 𝐜𝐜𝒊𝒊𝒊𝒊𝒊𝒊

𝑻𝑻 = [0 1] then in many cases the initial error value 
𝜎𝜎(𝐱𝐱) =0 would also hold. Therefore, the characteristics 
given in equation (14) are not sufficient alone. An initial 
offset is also to be set to ensure it. This can be imagined 
as an initial speed request that is to be reached, on the 
phase plane this would be represented as a constant speed 
offset, this characteristic is given in equation (15) 
 

𝑙𝑙𝑙𝑙𝑙𝑙
𝜑𝜑~→0

ΔΩ(𝜑𝜑~) = ΔΩ
t

𝑙𝑙𝑙𝑙𝑙𝑙
𝜑𝜑~→𝑖𝑖𝑖𝑖𝑖𝑖

ΔΩ(𝜑𝜑~) = ΔΩ
ini (15) 

 
where, ΔΩ(φ̃) is the speed offset value. 
 

Then the line segment weighing function is also used 
here for the sliding manifold and the offset values 
resulting in the error signal 
 

𝜎𝜎(𝐱𝐱) = (𝛿𝛿(𝜑𝜑~)𝐜𝐜𝒊𝒊𝒊𝒊𝒊𝒊
𝑻𝑻 + (1 − 𝛿𝛿(𝜑𝜑~)) 𝐜𝐜𝑡𝑡

𝑇𝑇) x+
+𝛿𝛿(𝜑𝜑~)ΔΩ

inisgn(𝜑𝜑~ )
(16) 

 
as the target offset is ΔΩ

𝑡𝑡 = 0. Furthermore, where 
δ(φ̃) = 1

Δφ̃
|φ̃(𝑛𝑛)| − 1

Δφ1̃
. In this function,  Δφ1̃ and Δφ̃ 

are design parameters to set the initial and end position 
error of the line segment interpolation.  
 
The control law is then equivalent in form to that of in 
equation (13), however the constant slope 𝜆𝜆1 is changed 
to weighted function: 
 

λ1 → (𝛿𝛿(𝜑𝜑~)𝜆𝜆1
ini + (1 − 𝛿𝛿(𝜑𝜑~)) 𝜆𝜆1

t ) (17) 
 
With this are interpolation function is finished and are 
control law is defined along the phase plane. The 
simulation results are gathered in the following section.  
 

3. SIMULATION RESULTS 
 
In this section the simulation results are summarized. The 
simulations were built in Matlab/Simulink, the SW 
components were simulated in discrete time and the HW 
components were simulated in continuous time. The SW 
components ran with different sampling time, the DSMC 
had a sampling frequency of 1[kHz], while the current 
controller had a sampling frequency of 20[kHz]. In Table 
1. the simulation parameters are gathered, which are 
relevant to the design of the sliding mode controller, such 
as maximum electric torque, and design parameters and 
driveline limitations.  The parameters of IPMSM can be 
found in [8]. 
 

Table 1. Simulation Parameters 
Name Symbol Value[unit] 
Ini. Manifold 𝐜𝐜𝒊𝒊𝒊𝒊𝒊𝒊

𝑻𝑻  [50 1] 
Tar. Manifold 𝐜𝐜𝑡𝑡

𝑇𝑇  [0   1] 
Ini. Offset ΔΩ

ini ±800[𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠] 
Tar. Offset ΔΩ

t  0[rad/s] 
Weight fact. Δ𝜑̃𝜑 59[rad] 
Weight fact. Δ𝜑𝜑1̃  6[rad] 
Boundary fact Δ 150[-] 
Act. Limit |𝜑̃𝜑(𝑛𝑛)|𝑚𝑚 110[rad] 
Stiffness 𝑠𝑠 0.063[Nm/rad] 
Inertia Θm 460e-6[kgm^2] 
Damping 𝑘𝑘 0.001[Nm/(rad/s)] 
Max. Torque 𝑀𝑀e

max 12.73[Nm] 
Max Hyst. 𝑀𝑀𝜂𝜂

max 2[Nm] 
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Fig.1. Control structure of the electromechanical drive system. 
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~

m (8) 
 
where, 𝒄𝒄𝑻𝑻 = [𝜆𝜆11]  is the vector defining the sliding 
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= 𝑠𝑠 ⋅ 𝜑𝜑m + (𝑘𝑘 − Θm𝜆𝜆1)Ωm

(10) 

 
where n represents the 𝑛𝑛-th sampling time of the system, 
however for sake of brevity this will be neglected in the 
notation later on.  
To handle the unknown nonlinear disturbance most 
commonly a switching-type control law is added to the 
equivalent control. In our case is a  a saturation based 
control law: 
 

𝑢𝑢𝑠𝑠𝑠𝑠 = −𝑀𝑀e
max ⋅ sat(𝜎𝜎(𝐱𝐱)) (11) 

 
where, the sat(𝜎𝜎(𝐱𝐱)) function is defined as according to 
equation (12). 
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sat(𝜎𝜎(𝐱𝐱)) = {
−1 if 𝜎𝜎(𝐱𝐱) < −Δ

𝜎𝜎(𝐱𝐱)
Δ if |𝜎𝜎(𝐱𝐱)| < Δ
1 if 𝜎𝜎(𝐱𝐱) > Δ

(12) 

 
Where, Δ is a design parameter. Thus the sliding phase 
control input can be written as: 
 

u = 𝑢𝑢eq + 𝑢𝑢sw (13) 

It can be noticed, when all is written, that in this case the 
−Θm𝜆𝜆1Ωm component of the equivalent control law 
impedes the maximum available torque output, 
especially in deep field weakening during reaching 
phase, thus restraining the control structure to output the 
maximal control signal. To minimize this problem one 
could say that tuning 𝜆𝜆1 sufficiently should be enough. 
However, this will be constly in dynamics near the 
equilibrium, or in an edge case, if 𝜆𝜆1 = 0, then the error 
signal 𝜎𝜎(𝐱𝐱) = 0 will also hold, thus the control will not 
produce any torque reference. To attenuate this problem 
an adaptive sliding manifold is proposed. 
 

2.2 Adaptive Sliding Manifold 
 
The idea is to minimize the effect of this component of 
the control law while the motor is speeding up, and near 
the equilibrium we allow the full effect. Meaning, we 
wish the following characteristic for the parameter 𝐜𝐜𝑇𝑇  
defined in equation (14). 
 

𝑙𝑙𝑙𝑙𝑙𝑙 
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𝑻𝑻 (14) 

 
In equation (14), the slope of the linear manifold has been 
made a function of the position error 𝐜𝐜𝑻𝑻(𝜑𝜑~), 𝐜𝐜𝒊𝒊𝒊𝒊𝒊𝒊

𝑻𝑻  is the 
initial slope and 𝐜𝐜𝑡𝑡

𝑇𝑇  is the target slope.  
However, if let us assume that the initial slope would be 
null 𝐜𝐜𝒊𝒊𝒊𝒊𝒊𝒊

𝑻𝑻 = [0 1] then in many cases the initial error value 
𝜎𝜎(𝐱𝐱) =0 would also hold. Therefore, the characteristics 
given in equation (14) are not sufficient alone. An initial 
offset is also to be set to ensure it. This can be imagined 
as an initial speed request that is to be reached, on the 
phase plane this would be represented as a constant speed 
offset, this characteristic is given in equation (15) 
 

𝑙𝑙𝑙𝑙𝑙𝑙
𝜑𝜑~→0

ΔΩ(𝜑𝜑~) = ΔΩ
t

𝑙𝑙𝑙𝑙𝑙𝑙
𝜑𝜑~→𝑖𝑖𝑖𝑖𝑖𝑖

ΔΩ(𝜑𝜑~) = ΔΩ
ini (15) 

 
where, ΔΩ(φ̃) is the speed offset value. 
 

Then the line segment weighing function is also used 
here for the sliding manifold and the offset values 
resulting in the error signal 
 

𝜎𝜎(𝐱𝐱) = (𝛿𝛿(𝜑𝜑~)𝐜𝐜𝒊𝒊𝒊𝒊𝒊𝒊
𝑻𝑻 + (1 − 𝛿𝛿(𝜑𝜑~)) 𝐜𝐜𝑡𝑡

𝑇𝑇) x+
+𝛿𝛿(𝜑𝜑~)ΔΩ

inisgn(𝜑𝜑~ )
(16) 

 
as the target offset is ΔΩ

𝑡𝑡 = 0. Furthermore, where 
δ(φ̃) = 1

Δφ̃
|φ̃(𝑛𝑛)| − 1

Δφ1̃
. In this function,  Δφ1̃ and Δφ̃ 

are design parameters to set the initial and end position 
error of the line segment interpolation.  
 
The control law is then equivalent in form to that of in 
equation (13), however the constant slope 𝜆𝜆1 is changed 
to weighted function: 
 

λ1 → (𝛿𝛿(𝜑𝜑~)𝜆𝜆1
ini + (1 − 𝛿𝛿(𝜑𝜑~)) 𝜆𝜆1

t ) (17) 
 
With this are interpolation function is finished and are 
control law is defined along the phase plane. The 
simulation results are gathered in the following section.  
 

3. SIMULATION RESULTS 
 
In this section the simulation results are summarized. The 
simulations were built in Matlab/Simulink, the SW 
components were simulated in discrete time and the HW 
components were simulated in continuous time. The SW 
components ran with different sampling time, the DSMC 
had a sampling frequency of 1[kHz], while the current 
controller had a sampling frequency of 20[kHz]. In Table 
1. the simulation parameters are gathered, which are 
relevant to the design of the sliding mode controller, such 
as maximum electric torque, and design parameters and 
driveline limitations.  The parameters of IPMSM can be 
found in [8]. 
 

Table 1. Simulation Parameters 
Name Symbol Value[unit] 
Ini. Manifold 𝐜𝐜𝒊𝒊𝒊𝒊𝒊𝒊

𝑻𝑻  [50 1] 
Tar. Manifold 𝐜𝐜𝑡𝑡

𝑇𝑇  [0   1] 
Ini. Offset ΔΩ

ini ±800[𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠] 
Tar. Offset ΔΩ

t  0[rad/s] 
Weight fact. Δ𝜑̃𝜑 59[rad] 
Weight fact. Δ𝜑𝜑1̃  6[rad] 
Boundary fact Δ 150[-] 
Act. Limit |𝜑̃𝜑(𝑛𝑛)|𝑚𝑚 110[rad] 
Stiffness 𝑠𝑠 0.063[Nm/rad] 
Inertia Θm 460e-6[kgm^2] 
Damping 𝑘𝑘 0.001[Nm/(rad/s)] 
Max. Torque 𝑀𝑀e

max 12.73[Nm] 
Max Hyst. 𝑀𝑀𝜂𝜂

max 2[Nm] 



GÉP, LXXVI. évfolyam, 2025.20 2. SZÁM
5 

 

The hysteresis hampering the system is shown in Fig. 2 
Hysteresis characteristic of the electromechanical 
driveline Fig. 2, where it can be seen that the absolute 
value of it increases linearly according to the position of 
the system. 
 
 

 
Fig. 2 Hysteresis characteristic of the 

electromechanical driveline 
 

In Fig.3 the phase plane of the system is shown in case of 
a stepwise reference position change in both directions in 
succession of one-another. 
 

 
Fig.3. Phase plane of the electromechanical drive 

showing the initial sliding manifold, the target manifold, 
and the dynamical behavior of the system. 

 
Initially, the state of the system follows the initial slope, 
then continuously converges to the target manifold in a 
stable fashion. There is no chattering along the system, 
but there are some oscillations in case of the reverse 
direction dynamics. In Fig. 4 the transient behavior of the 
controlled electromechanical system is presented.  
 

 
Fig. 4 Transient dynamics of the electromechanical driveline with adaptive sliding surface control. 

 
The first plot of the figure shows the error signal 𝜎𝜎(x). 
Initially the error decreases, but as the sliding slope 
begins to change, the error increases, this was expected 
and stability was still maintained, but mathematical proof 
of stability should be provided in future work. The 
second subplot shows the position and reference position 

of the motor. It can be seen that there is no chattering 
along the sliding mode. Furthermore, settling precision is 
high, as steady state error is approximately 0.5%. The 
third plot shows the speed of the machine, where in both 
directions it initially reaches the initial speed offset, then 
due to the energy provided by the spring in reverse 
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direction it can speed up even more. Subplot 4 shows the 
transient behaviour of the IPMSM. It can be seen that 
only in the initial portion of the dynamics does the 
realized electric torque follow the reference torque. This 
is due to the field-weakening characteristic of IPMSM 
motors. Above nominal speed the IPMSM cannot 
provide nominal torque, nonetheless, the reference 
generating algorithm always requests the maximum 
achievable torque in each working point. This is 
reinforced by subplot 5 where the lower level the lower 
level control efficiency is highlighted. It shows, that 
while the controller requests higher torque the reference 
generating algorithm only passed further realizable 
current references which resulted in smooth currents and 
good current following dynamics.  
 

4. CONCLUSIONS AND FUTURE WORK 
 
In conclusion the proposed simple adaptive sliding 
surface methodology coupled with the saturation 
function based switching function proved to be beneficial 
even in high hysteresis electromechanical systems 
according to simulation data. One main benefit is 
simplicity as only 3 design parameters are required, the 
other control parameters can be derived from motor 
parameters. Furthermore, the IPMSMs speed was 
indirectly limited in and the IPMSMs field weakening 
properties could be utilized effective with stable current 
control. The position error converged even in case of 
maximum dynamics in the ±0.5% range of the reference 
position, which is satisfactory in case of a high hysteresis 
system. Moreover, no chattering was experienced along 
the sliding manifold.  In our future work we aim to also 
compensate the effects of hysteresis in case of low speed 
actuations with identification or observer methods. Also, 
in future works we aim to include measurement results.  
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properties could be utilized effective with stable current 
control. The position error converged even in case of 
maximum dynamics in the ±0.5% range of the reference 
position, which is satisfactory in case of a high hysteresis 
system. Moreover, no chattering was experienced along 
the sliding manifold.  In our future work we aim to also 
compensate the effects of hysteresis in case of low speed 
actuations with identification or observer methods. Also, 
in future works we aim to include measurement results.  
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