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SLIDING MODE CONTROL OF IPMSM MACHINES
ACCOUNTING FOR WORKING POINTS

Téth-Katona Tamds™, Dr. Stumpf Péter™", Dr. Szabé Gergely™

OSSZEFOGLALAS
A kutatds folyaman egy masodrendii  forgd
elektromechanikus  rendszer hiszterézissel terhelt

csuszomdd szabalyozas alapti megoldasait vizsgaljuk.
Az elektromechanikus rendszer meghajtdja egy IPMSM
gép. A kutatas soran az adaptiv csuszofeliilet és adaptiv
elérési torvény metodusok keriiltek kivizsgalasra, illetve
kiértékelésre beallasi ido, tillovés és beallasi pontossag
alapjan.

ABSTRACT

In this paper sliding mode control methods of a second
order electromechanical system was investigated. The
driveline was loaded with a hysteresis profile and the
drive of the system is an IPMSM. In this brief the
adaptive sliding surface and adaptive reaching law
methods were compared. The comparison is based on the
respective settling time, settling precision and overshoot
of the control strategy.

INTRODUCTION

The global trends in the electrification of drivelines show
an upwards trend. More and more Internal Permanent
Magnet Synchronous Machines (IPMSM) are used in
electric or mild-hybrid vehicles. This is due to a number
of positive attributes of IPMSMs, such as high efficiency,
high power density and a wide-speed range operation. In
many cases these systems have a number of uncertainties
[1]. The uncertainties can vary from environmental
hazards to driveline losses or changing parameters
depending on the working point of the given driveline.
To handle these uncertainties, many variable structure
control (VSC) systems have been researched and many
surveys and state-of-the-art papers were written in this
field [2], [3]. Among the various VSC method Sliding
Mode Control (SMC) is one of the most applied due to
its favorable characteristics such as robustness,

simplicity and possibility to reduce control system
complexity by using hyperplanes.

The hyperplanes of the SMC controller are commonly
sliding surfaces in the scientific literature. These sliding
surfaces are defined in the systems m-dimensional phase
plane which can be derived from the mathematical model
given for the system. The sliding surfaces are reached
according to a set of reaching laws, then the system is
controlled to the desired state of the system via a control
input. These phases of the control are called, reaching
and  sliding phase. Moreover, in modern
electromechanical drivelines the control of the system is
carried out with the help of digital electric circuit units
(ECU) and microcontrollers. Therefore, discrete-time
SMC (DSMC) controllers are more and more prevelant
today [4]. In modern DSMC structures to enhance
dynamic performance we may either introduce nonlinear
sliding surfaces to achieve pre-defined finite settling
time, resulting in terminal-DSMC [5]. Another way, is to
attenuate the chattering by using high-order DSMC [6] or
by using different switching based functions for the
control law [7]. Nonetheless, further work is still needed
regarding high dynamical electromechanical systems,
where we account for hysteresis, input delay and input
constraints. Therefore, in this paper we investigate the
settling precision of a DSMC structure, where we
account for control input constraints and hysteresis. The
rest of the paper is organized as follows. In Sec.2 the
theoretical background of the paper is established. In
Sec.3 the designed discrete-time sliding mode controller
is detailed with the selected reaching and sliding phase
control laws. In Sec.0 the simulation results are
presented. The simulations are carried out in
Matlab/Simulink using discrete-time software (SW)
modelling and continuous-time hardware modelling
(HW). Finally, in section Sec.0 we conclude the paper,
summarize the results and investigate future
improvement possibilities.

* PhD Student at Budapest University of Technology and Economics, tamas.tothkatona@aut.bme.hu

** Docent at Budapest University of Technology and Economics stumpf.peter@aut.bme.hu,

" Instructor at at Budapest University of Technology and Economics , szabo.gergely@vik.bme.hu

16 2. SZAM

GEP, LXXVI. évfolyam, 2025.



1. THEORETICAL BACKGROUND

In this section the theoretical background of the paper is
provided, meaning the equations describing the system
and the structure of the control loop.

1.1 Motion and machine equations of a second order
electromechanical driveline.

In this paper the mechanical components of the
electromechanical driveline are assumed to be modelled
as a second order system, where reduced stiffness s and
damping coefficient k are acting against the rotation of
an axle’s inertia ©,, where the driving torque is hampered
by a hysteresis characteristic M, ().

Then, the motion equations of the electromechanical
driveline can be written in a state space model as:

Pm] _ _OS —k Pm 0 3/1
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where, A is the state matrix, b is the input matrix, d is the
uncertainty vector, ¢, is the motor position, (,, is the
motor speed, ©,, is the electric drivelines reduced inertia,
M, (¢r,) is a general state dependent hysteresis profile of
the mechanical driveline, in this case linearly dependent
on the motor position. Finally, M, is the electric torque of
the motor. In modern SMC control structures, the
controlled state variables are to follow some reference
trajectory. This is most done by introducing error
functions given in equation (2)

Pm = Pm — P @
Q, =0Q,-0,

where, @l and QF, are reference motor position and
speed.

To continue to adhere to the papers given in the
following section, these error functions are used as the
states of the state-space, this entwines the resultant state-
space equations given in equation (3).

x=Ax—-x")+bu+d 3
Where, X = [ ] and X" g?] .

It is to be noted that, the difference based state space was
made by subtracting the reference values and cannot be
handled as initial condition of the state space equations,
therefore, they are added to the state space model. The
derived equivalent control law will be discussed in Sec.0.
The control signal of the mechanical portion M, of the
electromechanical system is the electric torque of the
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IPMSM within the system. The torque of an IPMSM can
be calculated via motor parameters and the help of i; and
iq current components as

3
M, = Enpiq(pr + ALig), 4)

where np is the number of pole pairs in the IPMSM, Wpy
is the flux of the permanent magnet, AL = Lq — Lg,
where Lg and L are the d and q axis inductance of the
machine. The voltage equation of an IPMSM where the

iron losses are also considered can be written in dq-axis
as [8]

. dig .
Vg = Rgligqy + Ly ar wyLgiq
di, 5)
= Rgigr + Ly ‘e —a 4 w1Lgig + w1 ¥py

where, w; = npl,, is the electric speed of the machine,
R; is the stator resistance, v4 and v, are the direct and
quadrature voltages. Furthermore, iy; =iy + iy and
g1 = iq +iq where ig and iy are the d and q axis
current through resistance R;, expressing the iron loss of
the machine [8]. Two constraint equations are given for
the IPMSM. The voltage constraint given in the
following equation (6).

VDC

4/vd+vq—V1 Vlmax=ﬁ (6)

Where V; denotes the momentary amplitude of the stator
voltage and Vp is the DC bus voltage of the VSI.
The current constraint equation given in the following

equation (7).
‘/igl + iél = 11 < [maX' (7)

where I; denotes the momentary amplitude of the stator
current and I, is the maximum allowable current of the
drive system.

1.2 Control Structure of the Driveline

On Fig.1 the control structure of the electric driveline can
be seen. First, the reference position ¢, is passed to the
sliding mode controller, which outputs the control input
of the mechanical driveline, which is the reference
torque. The reference torque of the IPMSM machine is
calculated according to the machine equations given in
equation (5) and based on the optimal searching-based
reference current generation algorithm presented in the

paper [8].
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Fig.1. Control structure of the electromechanical drive system.

The reference generating algorithm outputs the reference
currents and passes them to the " Current Controller"
block. The current controller was designed according to
paper [9]. In the paper the closed loop current controller
was designed using discrete time block-pole placement
to define its dynamics. In case of a wide range of working
points the motor parameters could vary, this can be
handled with LUTs or parameter identification methods.
The Space Vector Modulation (SVM) block implements
the most commonly used so-called Min-Max modulation
method and outputs the phase duties to the legs of the
Voltage Source Inverter (VSI). The IPMSM model
accounts for iron losses and copper losses. Finally, the
SMC control of the electromechanical driveline is
detailed. However as this is the main component of this
article it is discussed separately in the following section.

2. SLIDING MODE CONTROLLER DESIGNS

In this section the designed sliding mode controller is
described. Paper [10] proposed a sliding mode control
where the sliding surface adapts according to the system
state. It is suggested in that paper that all sliding surfaces
should be stable and attracting the system states to the
origin of the phase plane. Furthermore, a fuzzy logic and
iterative cost function minimalization algorithm was
included in that paper. Here, different to the findings of
that study, a simpler approach is chosen, simply using a
state dependant line segment of an initial and a target
sliding manifold, then calculating the control signal
based on the equivalent control law and saturation
function defined. First let us derive the equivalent control
in case of a constant sliding surface to illustrate the
drawbacks of a constant sliding manifold.

18
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2.1 Derivation of Control Law

Most commonly the sliding manifold is defined as

o(x) = c'x = 4 + Oy ®)
where, ¢! =[1;1] is the vector defining the sliding
manifold. Along the sliding manifold the error signal is
null, and in case of continuous control the differential is
also zero,

c’x =

0 9
Therefore, by multiplying both sides of equation (3) by
the sliding surface vector and solving for the control
input, we can find the equivalent control law along the
sliding surface in discrete time, derived in equation (10)

we have:

leg () = ~(@D)ITAG-X)
=5 ¢m+ (k=040
where n represents the n-th sampling time of the system,
however for sake of brevity this will be neglected in the
notation later on.
To handle the unknown nonlinear disturbance most
commonly a switching-type control law is added to the
equivalent control. In our case is a a saturation based
control law:
Ugy = —MP* - sat(o(x)) (11)
where, the sat(a(x)) function is defined as according to
equation (12).
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-1 ifo(x)<-A
o(x)

A if lo(x)| < A
1 ifo(x) > A

sat(a(x)) = (12)

Where, A is a design parameter. Thus the sliding phase
control input can be written as:

U = Ugq + Usw (13)
It can be noticed, when all is written, that in this case the
—0mA1Q, component of the equivalent control law
impedes the maximum available torque output,
especially in deep field weakening during reaching
phase, thus restraining the control structure to output the
maximal control signal. To minimize this problem one
could say that tuning A, sufficiently should be enough.
However, this will be constly in dynamics near the
equilibrium, or in an edge case, if ; = 0, then the error
signal a(x) = 0 will also hold, thus the control will not
produce any torque reference. To attenuate this problem
an adaptive sliding manifold is proposed.

2.2 Adaptive Sliding Manifold

The idea is to minimize the effect of this component of
the control law while the motor is speeding up, and near
the equilibrium we allow the full effect. Meaning, we
wish the following characteristic for the parameter ¢’
defined in equation (14).

imc'(p) =cf
-0

~ 14
limc(p) = cly a
@-inf

In equation (14), the slope of the linear manifold has been
made a function of the position error cT(cp), cl; is the

initial slope and ¢! is the target slope.
However, if let us assume that the initial slope would be

Then the line segment weighing function is also used
here for the sliding manifold and the offset values
resulting in the error signal

o(x) = (5(&)‘35& + (1 - 5((;))) ch) X+

oo (16)
+6(¢p) A sgn (o)

as the target offset is A% = 0. Furthermore, where

~ 1~ 1 . .
8(p) = iy [p(n)| — py In this function, Ag; and Ag
are design parameters to set the initial and end position

error of the line segment interpolation.

The control law is then equivalent in form to that of in
equation (13), however the constant slope 1, is changed
to weighted function:

M- (8(o)A 4+ (1-8(p))21) M
With this are interpolation function is finished and are

control law is defined along the phase plane. The
simulation results are gathered in the following section.

3. SIMULATION RESULTS

In this section the simulation results are summarized. The
simulations were built in Matlab/Simulink, the SW
components were simulated in discrete time and the HW
components were simulated in continuous time. The SW
components ran with different sampling time, the DSMC
had a sampling frequency of 1[kHz], while the current
controller had a sampling frequency of 20[kHz]. In Table
1. the simulation parameters are gathered, which are
relevant to the design of the sliding mode controller, such
as maximum electric torque, and design parameters and
driveline limitations. The parameters of IPMSM can be
found in [8].

Table 1. Simulation Parameters

null ¢Z; = [0 1] then in many cases the initial error value | Name Symbol Value[unit]
o(x) =0 would also hold. Therefore, the characteristics Ini. Manifold chi [50 1]
given in equation (14) are not sufficient alone. An initial Tar. Manifold c’ [0 1]
offset is also to be set to ensure it. This can be imagined Ini. Offset A +800[rad/s]
as an initial speed request that is to be reached, on the i ftl —
phase plane this would be represented as a constant speed | Tar. Offset Aq O[rad/s]
offset, this characteristic is given in equation (15) Weight fact. Ay 59[rad]
- Weight fact. Ag- 6[rad]
lima(p) = 4q Boundary fact A 150
@0 (15) oundary fac [-]
lim AQ(&)) = A Act. Limit [g(m)|™ 110[rad]
p=inf Stiffness s 0.063[Nm/rad]
where, A (§) is the speed offset value. Inertia Om 460e-6[kgm"2]
Damping k 0.001[Nm/(rad/s)]
Max. Torque Mg 12.73[Nm]
Max Hyst. My 2[Nm]
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The hysteresis hampering the system is shown in Fig. 2
Hysteresis characteristic of the electromechanical
driveline Fig. 2, where it can be seen that the absolute
value of it increases linearly according to the position of
the system.
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Fig. 2 Hysteresis characteristic of the
electromechanical driveline

In Fig.3 the phase plane of the system is shown in case of
a stepwise reference position change in both directions in
succession of one-another.

—Error function o(x)
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Fig.3. Phase plane of the electromechanical drive
showing the initial sliding manifold, the target manifold,
and the dynamical behavior of the system.

Initially, the state of the system follows the initial slope,
then continuously converges to the target manifold in a
stable fashion. There is no chattering along the system,
but there are some oscillations in case of the reverse
direction dynamics. In Fig. 4 the transient behavior of the
controlled electromechanical system is presented.
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Fig. 4 Transient dynamics of the electromechanical driveline with adaptive sliding surface control.

The first plot of the figure shows the error signal o(x).
Initially the error decreases, but as the sliding slope
begins to change, the error increases, this was expected
and stability was still maintained, but mathematical proof
of stability should be provided in future work. The
second subplot shows the position and reference position

20 2. SZAM

of the motor. It can be seen that there is no chattering
along the sliding mode. Furthermore, settling precision is
high, as steady state error is approximately 0.5%. The
third plot shows the speed of the machine, where in both
directions it initially reaches the initial speed offset, then
due to the energy provided by the spring in reverse
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direction it can speed up even more. Subplot 4 shows the
transient behaviour of the IPMSM. It can be seen that
only in the initial portion of the dynamics does the
realized electric torque follow the reference torque. This
is due to the field-weakening characteristic of IPMSM
motors. Above nominal speed the IPMSM cannot
provide nominal torque, nonetheless, the reference
generating algorithm always requests the maximum
achievable torque in each working point. This is
reinforced by subplot 5 where the lower level the lower
level control efficiency is highlighted. It shows, that
while the controller requests higher torque the reference
generating algorithm only passed further realizable
current references which resulted in smooth currents and
good current following dynamics.

4. CONCLUSIONS AND FUTURE WORK

In conclusion the proposed simple adaptive sliding
surface methodology coupled with the saturation
function based switching function proved to be beneficial
even in high hysteresis electromechanical systems
according to simulation data. One main benefit is
simplicity as only 3 design parameters are required, the
other control parameters can be derived from motor
parameters. Furthermore, the IPMSMs speed was
indirectly limited in and the IPMSMs field weakening
properties could be utilized effective with stable current
control. The position error converged even in case of
maximum dynamics in the +0.5% range of the reference
position, which is satisfactory in case of a high hysteresis
system. Moreover, no chattering was experienced along
the sliding manifold. In our future work we aim to also
compensate the effects of hysteresis in case of low speed
actuations with identification or observer methods. Also,
in future works we aim to include measurement results.
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