MEGERŐSÍTÉSES TANULÁSON ALAPULÓ ÁGENSEK TELJESÍTMÉNYÉNEK JAVÍTÁSA TAPASZTALAT ALAPÚ KONTEXTUS BEVEZETÉSÉVEL

IMPROVING THE PERFORMANCE OF REINFORCEMENT LEARNING AGENTS USING EXPEPERIENCE-BASED CONTEXT

Published in GÉP 2025/2

https://doi.org/10.70750/GEP.2025.2.2

Farkas Péter,
PhD hallgató

Szőke László
PhD hallgató

Dr. Aradi Szilárd
egyetemi docens

Dr. Gyurkó Zoltán
R&D csoportvezető


ABSTRACT
This paper proposes an experience-based online adaptation framework for reinforcement learning agents, enabling them to adjust to changing conditions by leveraging past state-action transitions, improving their performance in dynamic environments without relying on hard-to-obtain information. The performance of our solution is evaluated through the control problem of a robot model covering a wide dynamic range.